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ABSTRACT

Despite the higher video-completion quality that recently pro-
posed methods have enabled for a wide variety of cases, their
computational complexity remains a major concern. These
methods typically frame video completion as an optimization
problem over the whole spatiotemporal domain—a problem
that is expensive to solve both in time and space. In this pa-
per we propose a lighter-weight multipass video-completion
pipeline that replaces global spatiotemporal optimization
with simpler frame-by-frame motion reconstruction and re-
finement. We achieve a processing speed of 2.6 seconds per
frame on Full HD content while delivering nearly state-of-
the-art completion quality for a wide range of dynamic scenes
captured using a free-moving camera. To validate the perfor-
mance of our proposed method, we conducted a subjective
comparison of different video-completion results for 26 test
sequences from the DAVIS data set.

Index Terms— Video completion, inpainting

1. INTRODUCTION

Video completion is an important problem in video process-
ing and has a wide variety of applications, including video
restoration, rig removal and occlusion filling in virtual-view
synthesis. Compared with more-widespread image inpaint-
ing, video completion introduces additional challenges, such
as the need to handle vastly larger amounts of data and to
maintain temporal coherency in the presence of arbitrary cam-
era motion. At the same time, better inpainting results are
typically possible using information available in other input-
video frames. Recently, work by Newson et al. [1] addressed
the problem of handling complex motion such as crashing
waves, but it employed simple affine realignment to handle
camera motion. Huang et al. [2] showed the limitations of
such an approach and proposed joint estimation of optical
flow and color in the missing region as a more general way to
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Fig. 1. Speed/quality tradeoff comparison. Running time is
measured for the “Camel” sequence (854×480, 90 frames).
Subjective-quality scores were computed for the DAVIS data
set using the Crowd Bradley-Terry model.

handle camera motion. Both techniques, however, take sev-
eral hours to inpaint a moderately large missing region in a
90-frame 480p video sequence (see Figure 1).

To address the high computational complexity, we took a
simpler greedy approach instead of jointly estimating the flow
and color through global spatiotemporal optimization. Our
approach estimates the optical flow for the missing region
in each frame independently (Section 3.1) and accumulates
the results from several passes over the input sequence to in-
crementally construct a mapping from the missing regions to
the known regions of the appropriate source frames to enable
reconstruction. We ameliorate the resulting accumulation of
flow and color error by applying frame-by-frame variational
refinement (Section 3.2) and illumination adjustment (Section
3.3). Doing so dramatically reduces computational complex-
ity and memory requirements, and it allows us to process long
high-resolution videos in a reasonable time while still sup-
porting reconstruction by copying from any input-sequence
frame.

Despite the inherent limitations of such greedy frame-by-
frame processing, it provides competitive video-completion
results for a wide range of dynamic videos with a freely
moving camera, except for the specific cases we discuss in
Section 4.1. To demonstrate this claim we applied three
video-completion methods to 26 test videos from the DAVIS
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Fig. 2. Proposed video-completion pipeline. We use a three-pass scheme for temporally consistent propagation of known
input-video fragments and spatial-inpainting results from the first and last frames. The missing region appears in red.

data set [3], which Huang et al. [2] introduced in the video-
completion literature, and then computed subjective quality
scores using the Subjectify.us web service. As Figure 1
shows, our proposed method yields completion quality that is
close to the state of the art for this data set.

2. RELATED WORK

Numerous video-completion algorithms have been proposed
over the years; for a more complete overview, consult the
survey by Ilan and Shamir [4]. We mostly focus on newer
methods that are relevant to our approach. Since the seminal
work by Wexler et al. [5], spatiotemporal-patch-based tech-
niques have appeared extensively in the video-completion
literature either for performing motion completion or for in-
painting the missing region directly [1, 6, 7, 8]. Although
they provide impressive results in many cases, arbitrary cam-
era motion is difficult to handle when using spatiotemporal
patch sampling. Le et al. [9] addressed this issue by em-
ploying skewed parallelepipeds, where the optical-flow field
defines the degree of skew. Huang et al. [2] instead chose
two-dimensional patches while relying only on the estimated
flow field to ensure temporal consistency. Patch-based syn-
thesis typically requires repeated computation of nearest-
neighbor fields—a task that despite all the speedup efforts
[10, 11, 12] remains a major source of computational com-
plexity in related video-completion methods. For this reason
we avoid using patch-based techniques except when applying
spatial inpainting to the input video’s first and last frames.
Although some approaches rely on a predefined parametric
motion model such as affine [1], projective [13] or piecewise
projective [14] transformations, we selected a more general
nonparametric optical-flow-based model, as in [2, 15, 16].

Our work builds on a previous hole-filling method for
virtual-view synthesis [17] and has several important distinc-
tions. We propose a novel joint optical-flow estimation and
completion approach that makes the method far more robust.
We integrate our temporal reconstruction with spatial inpaint-
ing to fill in fragments that are missing from all input-video

frames. Finally, we adapt the Poisson blending [18] formula-
tion to perform illumination adjustment.

3. PROPOSED METHOD

Our method consists of three passes over the input sequence,
as Figure 2 illustrates. First, a forward pass incrementally
creates a cumulative mapping Vt from each current frame It
to the previous frames {Ik}t−1

k=1 and simultaneously performs
reconstruction by copying corresponding fragments from the
previous frames into the current frame. We use an existing
spatial-inpainting algorithm [19] to fill in regions that are still
missing from the last frame after reconstruction. Second, a
backward pass enables temporally consistent propagation of
the spatial-inpainting result and copying of known fragments
from any future frame. It finishes by applying spatial inpaint-
ing to any regions in the first frame that are still missing. And
third, we apply another forward pass to propagate the spatial-
inpainting result from the first frame. This spatial-inpainting
integration is less general than in the framework Huang et
al. proposed [2], but it allows much faster processing. In
rare cases where missing regions persist after three passes,
we apply a diffusion-based image-inpainting method [20] to
each frame independently as a final step. In all passes we
process each frame by first computing an optical-flow field
that is smoothly interpolated into the missing region, sum
it with the cumulative mapping to previous frames and re-
fine the new mapping through a variational approach. For
our final step before reconstruction we apply Poisson blend-
ing, with additional temporal-consistency constraints, to each
copied fragment. The following sections describe in more de-
tail our flow computation, variational refinement and Poisson
blending modification.

3.1. Fast joint optical-flow estimation and completion

Unlike existing two-frame motion-completion approaches
[15, 21] that perform optical-flow estimation and completion
separately, we perform these tasks jointly. Our approach



is inspired by a recent fast optical-flow algorithm [22], but
instead of alternating patch-based gradient descent and varia-
tional refinement, we combine them into a single optimization
problem to be solved on a sparse grid. In particular, we em-
ploy s × s patches with a stride of s pixels and compute one
optical-flow vector per patch from the current frame I0 to the
previous frame I1. We use P (x) to denote a patch centered
on pixel x. The data term is undefined inside the respective
missing regions Ω0 and Ω1, so the smoothness term becomes
the only constraint there. To estimate the sparse optical flow
O = (u, v) both inside and outside the missing region, we
minimize the following energy function:

E(O)=
∑
x

Φ
(∑
p∈P (x)
p/∈Ω0

p+O(x)/∈Ω1

wp

(
∇O(x)I(p)−

∑
p wp∇O(x)I(p)∑

p wp

)2)

+αΦ
(
||∇u(x)||2 + ||∇v(x)||2

)
. (1)

Similar to [22], Φ(s2) =
√
s2 + 0.0012 is a robust penalty

and wp = (1 + ||∇I0(p)||2)−1 is a normalization weight for
the brightness-constancy term. ∇O(x)I(p) denotes the bright-
ness difference I0(p)− I1(p+O(x)) and α is a smoothness-
term weight. We omit the gradient-constancy term, as we al-
ready have patch mean-normalization in the data term to re-
duce the influence of illumination changes. We found that
the high-frequency component of the optical-flow field has a
negligible impact on completion quality, so computing flow
vectors with a stride of s = 8 is sufficient. The final per-pixel
optical-flow field is the result of bilinear interpolation.

We solve (1) iteratively in a Gaussian pyramid with the
same patch size s for all scales. We use a downscale factor
of 2 and select the coarsest scale so at least one s × s patch
still fits in the downscaled frame. For each scale we perform
Nof outermost iterations with a first-order Taylor expansion
of I1 in the neighborhood of the current optical-flow-vector
approximation. Each outermost iteration includes Nfp fixed-
point iterations, and each fixed-point iteration entails solving
a linear system with NSOR successive over-relaxation (SOR)
iterations.

3.2. Frame-by-frame variational refinement

By accumulating interframe optical-flow fields we obtain
an initial approximation of the mapping Vt that defines the
correspondence between certain parts of the missing region
Ωt in the current frame and known regions in other frames.
This mapping can be used as is for reconstruction, but the
variational-refinement step can increase its quality. The goal
of this additional step is to improve the alignment between
fragments copied from different source frames as well as
the alignment with the known fragments around the missing
region Ωt, thereby avoiding visible seams and compensating
for optical-flow-error accumulation. To enable optimization
for alignment of different fragments, we maintain an overlap

of d = 6 pixels between mappings to different source frames
when accumulating Vt. Doing so allows us to define an
optical-flow-like data term ED(Vt) that penalizes misalign-
ment and to define a smoothness term ES(Vt) that maintains
the continuity of each mapping to a given source frame:

V t = arg min
V t

(
ED(V t) + λES(V t)

)
. (2)

Solving this optimization problem involves Nref fixed-
point iterations and NCG iterations of the conjugate-gradient
method. A more formal description, along with the definition
of ED and ES , appears in [17].

3.3. Illumination adjustment

Compared with existing Poisson-blending extensions in the
video-completion literature [14], we propose a different way
to handle temporal consistency. Instead of uniformly pe-
nalizing the deviation from the motion-compensated previous
frame, we use adaptive weightswPBp = (1+σPB ||∇IPB(p)−
Gt(p)||2)−1 to enforce temporal consistency more in regions
where the gradient field of the base Poisson-blending result
IPB (i.e., solution of (3) with wPBp ≡ 1) deviates the most
from the target gradient field Gt(p). This approach enables
better processing of scenes with global uniformly changing
brightness (since wPBp will be close to one) while enforc-
ing temporal stability around local inconsistencies. So, to
perform the final reconstruction we copy the gradient-field
fragments from corresponding source frames to form the
target gradient field Gt, and we use the surrounding region
in the current frame It along with the reconstruction results
from the previous frame It0 to formulate boundary conditions
weighted separately according to wPBp :

B(I)=
∑
p∈Ωt

||∇I(p)−Gt(p)||2 +
∑
p∈δΩt

wPBp ||I(p)− It(p)||2

+
∑
p∈Ωt

(1− wPBp )||I(p)− It0(p+Ot(p))||2. (3)

Here, δΩt denotes the outer-boundary pixels of the missing
region Ωt, and σPB in wPBp is a constant that defines the
strength of temporal-consistency enforcement.

We found that minimizing (3) directly is too computation-
ally expensive; it becomes a bottleneck in our proposed video-
completion pipeline. Instead we use a separable approxima-
tion by decomposingB(I) into row- and column-wise energy
functions BH and BV that result from simply ignoring all the
vertical and horizontal dependencies, respectively. The au-
thors of [23] previously applied the same idea to fast global
filtering. The solution then comes from alternately minimiz-
ing BH and BV , using copied source-frame fragments as the
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Fig. 3. Running time of the proposed method on the “Camel”
sequence upscaled to various resolutions (90 frames, DAVIS
data set). The base algorithm uses the full video-completion
pipeline but omits the optional variational-refinement and
illumination-adjustment steps.

initial approximation:

I
′

k= arg min
I

(εk
∑
p

||I(p)− Ik−1(p)||2+BH(I)), (4)

Ik= arg min
I

(εk
∑
p

||I(p)− I
′

k(p)||2+BV (I)), k = 1 . . .K

We use K = 5 iterations and εk = 10−4 · 8k−1 as weights
controlling the contribution of the previous iteration.

4. EXPERIMENTAL RESULTS

We implemented the proposed video-completion algorithm in
C++ using multicore parallelization of all major components
and using SIMD optimizations in the optical-flow solver. Our
approach employs the parallel conjugate-gradient solver from
the Eigen library to solve the variational-refinement problem
(2). We used the following algorithm parameters in all of our
experiments: α = 0.5, λ = 200, σPB = 0.002, Nof =
10, Nfp = 5, NSOR = 25, Nref = 1 and NCG = 50.
The running time was measured on a laptop with a quad-core
2.9GHz Intel i7-7820HQ CPU and 16GB of memory.

We used the DAVIS data set [3] to estimate the video-
completion performance under challenging conditions, as
well as to compare our results with those of Huang et al.
[2] using the provided object masks (which also include
shadows). We used the published video-completion results
of [1] and [2] on 26 test sequences at 480p resolution and
applied our method to the same input data. Le et al. [9]
have only published results for their method using raw masks
that exclude object shadows, making these results hard to
compare with others. To numerically assess the completion
quality we performed a subjective pairwise comparison us-
ing the Subjectify.us web service. In this comparison, 63
participants were shown pairs of video-completion results
produced by different methods; for each pair we asked them

Off
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(VideoCompletion.org)

Off
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(b) “Horsejump-low”
(DAVIS data set)

Fig. 4. Effect of variational refinement (a) and illumination
adjustment (b) in our method.

(a) Source (b) Le et al. [9] (c) Ours
Fig. 5. Our algorithm may fail to reconstruct com-
plex background-motion fields with several moving objects.
Global spatiotemporal-optimization approaches like those in
[2] and [9] are advantageous in such cases.

to select the result with the best visual quality. We trans-
formed the pairwise comparison results into subjective scores
using the Crowd Bradley-Terry model. According to the
subjective-comparison results, our method provides comple-
tion quality similar to that of [2] (see Figure 1). We also pub-
lished complete sequences illustrating our method’s results
at http://videocompletion.org/fast_video_
completion. Compared with existing video-completion
approaches that take hours to process a few seconds of 480p
video, our approach is easily scalable to 4K (see Figure 3).
Moreover, variational refinement accounts for a large fraction
of the computation time but in many cases provides only a
minor quality improvement. Figure 4 illustrates the effect of
different algorithm components on completion quality.

4.1. Limitations

Although variational refinement helps to correct small optical-
flow-completion errors, our method is unable to recover from
major errors in motion-field reconstruction (see Figure 5).
Spatiotemporal-optimization approaches can employ infor-
mation from many surrounding frames to get a better recon-
struction compared with our two-frame optical flow, but it
comes at the cost of much higher computational complexity,
as we discussed earlier.

5. CONCLUSION

We proposed a computationally efficient video-completion al-
gorithm that provides competitive results for a wide range of
input sequences involving a freely moving camera, although
methods based on global spatiotemporal optimization have an

http://videocompletion.org/fast_video_completion
http://videocompletion.org/fast_video_completion


advantage in cases of complex background motion and mul-
tiple objects moving in the missing region. The high speed of
our approach is enabled by its novel algorithm for fast joint
optical-flow estimation and completion, as well as the separa-
ble approximation we used in the proposed Poisson-blending
modification.
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